

MEDTEC SCHOOL

Course: Biomedical Electronics and instrumentation

Year: 3rd

Period: 1st semester

Credits: 10

Objectives

The course will allow students to:

- be familiar with the basic components of medical instrumentation
- be familiar with the basic principles of the biomedical sensors
- analyze and understand the basic principles and techniques of biomedical instrumentation
- know the main uses and applications of biomedical instrumentation in the clinical settings
- understand the main limits of validity of biomedical instrumentation
- compare different possible available instruments for clinical measurements
- have a sense of the state of the art in the field of biomedical technology
- develop a critical appraisal and understand the limits of measurements

Prerequisites

Student are required to have acquired the content of the following Courses:

- Fundamentals of Experimental Physics
- Chemistry and Organic Chemistry
- Computer science
- Basics of Circuit theory
- Physiology, Anatomy and Biochemistry

Contents

Торіс	Hours	Teacher/s
Introduction	1	AA, RD, MS, AC, RR
Basic Concepts of Medical Instrumentation - Classifications of	10	AA, RD
Biomedical Instruments, Static and Dynamic Characteristics, Amplifiers,		

Comparators, Noise and Active Filters, Frequency Response, Impedance measurements		
Basic Sensors and Principles of detection- Displacement Measurements, Resistive Sensors, Bridge Circuits, Inductive Sensors, Phase-Sensitive, Capacitive Sensors, Piezoelectric Sensors, Accelerometer, Temperature Measurements, Thermocouples, Thermistors, Radiation Thermometry	18	AA, RR
Digital electronics and Microcontrollers in Medical Instrumentation – A/D convertion. Basics of digital electronics, Microcontrollers, Embedded Medical Systems, Selection of a Microcontroller, IoT-Based Medical Devices, examples.	20	RD
Biopotential Electrodes and amplifiers- The Electrode–Electrolyte Interface, Polarization, Polarizable and Nonpolarizable Electrodes, Electrode Behavior and Circuit Models, The Electrode–Skin Interface and Motion Artifact, Body-Surface Recording Electrodes. Specific applications: ECG, EMG and EEG.	10	MS, RR
Basic Requirements, The Electrocardiograph, Problems Frequently Encountered, Transient Protection, Common-Mode and Other Interference-Reduction Circuits, Amplifiers for Other Biopotential Signals, Example of a Biopotential Preamplifier, Other Biopotential Signal Processors, Cardiac Monitors, Biotelemetry		
Non-electrical Measurements of the Cardiovascular System –	8	AA, RD
Pulse-Oximeter Blood Pressure and Sound: – Direct Blood Pressure Measurements. honocardiography. Indirect Measurements of Blood Pressure, Tonometry		
Measurement of Flow and Volume of Blood: - Indicator-Dilution Method Ultrasonic Flowmeters, Thermal-Convection Velocity Sensors, Chamber Plethysmography, Electrical-Impedance Plethysmography, Photoplethysmography		
Respiratory System: measurement and therapeutic devices - Measurement of Pressure, Gas Flow, Lung Volume, Respiratory	15	AA, RD

Plethysmography, Gas Concentration		
ICU monitoring		
Mechanical Ventilators		
Biosensors - Electrochemical Sensors, Chemical Fibrosensors, Ion- Sensitive Field-Effect Transistor (ISFET), Immunologically Sensitive Field- Effect Transistor (IMFET), Noninvasive Blood-Gas Monitoring, Blood- Glucose Sensors, Electronic Noses, Lab-on-chip, Impedance-based biosensors, Fabrication technology of biochips, Surface functionalization, Antibodies detection, Limit Of Detection (LOD), Point- of-care instrumentation	12	MS, RR
Clinical Laboratory Instrumentation - Spectrophotometry, Automated Chemical Analyzers, Chromatology, Electrophoresis, Hematology	4	RR
Medical Imaging Systems – a. Basic principles of interaction between EM waves/radiation and tissues	20	AC, RD, RR
b. transduction methods. Optical Measurements, Radiation Sources, Radiation Sensors		
c. Medical Imaging systems. Radiography, Computed Tomography, Magnetic Resonance Imaging, Ultrasonography, Single-Photon Imaging, Single-Photon Emission Computed Tomography, Positron Emission Tomography, Optical Imaging		
Multimodality		
Medical devices. Design Criteria, Commercial Medical Instrumentation Development Process, Regulation of Medical Devices	2	RD
TOTAL	120	

Teaching Methods

The course will be offered through:

- Frontal lectures

- Numerical and circuit exercises
- Watching demonstrations of biomedical instruments (also in collaboration with biomedical companies)
- Practice- based demos

Verification of learning

The final exam is constituted by a written test (made of numerical exercise, open-ended questions, multiple choice questions) and a final oral exam.

Texts

John G. Webster (Editor), Amit J. Nimunkar (Editor). Medical Instrumentation: Application and Design, 5th Edition. Wiley