

Master in "Advanced Technologies in Rehabilitation"

Background

For several years now Bioengineering has been involved in developing technologies to improve functional evaluation and physiotherapy planning and with a particular focus on subjects with neuromuscular disorders. Although these advancements push physiotherapists to be tuned with their use in functional assessment and clinical treatment, there is still a risk that physiotherapists continue to consider technologies as a threat to their profession rather than as useful instruments for clinical practice.

To improve the scientific and clinical spread of technologies in the rehabilitation field, collaboration and competency sharing between engineers and physiotherapists is an emerging goal. However, engineering needs to develop technologies with a focus on the rationale of physiotherapy planning and physiotherapy needs to move on from preserving traditional and non-technological models.

Universities play an important role in promoting the use of technologies in rehabilitation by offering educational programs able to integrate motor control neurophysiology, rationale of physiotherapy planning, and bioengineering directed at both physiotherapists and rehabilitation engineering. Currently, Bachelor degree programs exclude any interdisciplinary training due to their already demanding course contents, and only a handful of postgraduate programs train physiotherapists and bioengineers in the theory, rationale, and use of technologies to support rehabilitation planning and outcome measurement.

Master program objectives

To introduce theory, rationale, and applications of technologies used in motor rehabilitation.

Candidates

Physiotherapists and occupational therapists with a licence to practice and bioengineers.

Program provider

This Master program is promoted by the Department of Biomedical Sciences of Humanitas University (Pieve Emanuele, Milan), in collaboration with the Politecnico of Milan and the Scientific Institute Don Gnocchi Foundation (Milan).

Scientific Board

Director:

Prof. Roberto Gatti (Humanitas University)

Scientific board:

Dr. Davide Cattaneo (Don Gnocchi Foundation, Milan),

Prof. Christian Cipriani (School of Advanced Studies Sant'Anna, Pisa),

Prof. Maria Laura Costantino (Politecnico of Milan),

Prof. Dario Farina (Imperial College London),

Prof. Carlo Frigo (Politecnico of Milan),

Prof Raffaello Furlan (Humanitas University),

Prof. Manuela Galli (Politecnico of Milan),

Prof. Marco Gazzoni (Politecnico of Turin),

Dr. Johanna Jonsdottir (Don Gnocchi Foundation, Milan),

Prof. Roberto Merletti (Politecnico of Turin)

Program content

The attainment of the Master program implies the acquisition of **60 ECTS** (1 ECTS = 25 hours) divided over the follows modules and activities:

- Modules A and L: acquisition and analysis of bioelectric and myoelectric signals + Lectures (8 ECTS),
- Modules B and L: instrumental analysis of motor performance + lectures (16 ECTS),
- Module C and L: technologies for therapeutic exercise + lectures (20 ECTS),
- Thesis (6 ECTS),
- Internship (10 ECTS).

Hours of Study

One ECTS is equivalent to 6 hours of lesson and 12 hours of internship.

One day is equivalent to 7 hours of lesson (9.00-13.00 and 14.00-17.00).

One week is equivalent to 6 days of lesson.

Program timetable

Period	Activities	Overall CFU
Sunday 16/01/22	- Bioelectric and myoelectric signals (8 CFU)	
Saturday 29/01/22	- Instrumental analysis of motor performance	(7 CFU)
(Except Sunday 23/1/22)		
Monday 13/06/22	- Instrumental analysis of motor performance	(9 CFU)
Saturday 25/06/22	- Technologies for therapeutic exercise (5 CFU)
(Except Sunday 19/6/22)		
Sunday 02/10/22	- Technologies for therapeutic exercise (15 CF	U)
Saturday 15/10/22		
(Except Sunday 9/10/22)		

MASTER PROGRAMME

Module L

Keynote lectures

- Dario Farina: "From neurophysiology to bioengineering of motor control"
- Robert Riener: "Robotics and rehabilitation: myths and reality"
- Roberto Gatti: "Motor impairment kinesiology: from clinical assessment to instrumental quantification"
- Marco Barbero: "Helical axis displacement in normal and pathological joints"
- Carlo Frigo: "A dynamic model of quadriceps and hamstrings function during gait"
- Giovanni Buccino: "Rationale and application of action observation training in motor rehabilitation"

Module A - Acquisition, analysis and interpretation of bioelectric and EMG signals Coordinators: Prof. Marco Gazzoni and Prof. Roberto Merletti

The objective of this module is to present the methodologies for acquisition, analysis, and interpretation of bioelectric (in particular myoelectric) signals, considering their features from a physiological point of view. Analysis includes the signals processing in the time-domain, frequency-domain, and their interpretation by means of modeling.

Topic	Lecture topics	Teacher	Hours
Mathematics	Review of math and basic physics of signals. Signals in	Roberto Merletti	7
and physics of	space and in time. Fourier expansion of a signal and		
physiological	concept of amplitude and power spectrum. Concept of		
electrical	bandwidth of a signal. Concept of filter.		
signals	Basic electrophysiology. Origin and informative content of	Roberto Merletti	4
	the main bioelectric signals: ECG, EEG, sEMG, nEMG.		
	Modeling of signal generation		
	Physiological signals in space (over the skin/chest) and in	Alberto Botter	3
	time. Spatial filter. Bipolar and multichannel array sEMG.		
Detection of	Transducer, sensor. Conditioning and amplification of a	Giacinto Luigi	4
bioelectric	signal. The electrode as a transducer. Sampling and A/D	Cerone	
signals.	conversion of bioelectric signal.		
Analysis of	Power line interference, noise and movement artefacts.	Giacinto Luigi	3
bioelectric	ECG interference. Focus on sEMG.	Cerone	
signals and	Demo. Tips and tricks: "how should bioelectric signals	Roberto Merletti,	3
surface EMG	(sEMG) be properly detected". Reduction of power line	Taian Vieira,	
	interference, noise, movement artefacts, ECG	Marco Gazzoni	
	interference.		
EMG Signal	Processing and feature extraction. Temporal features of	Taian Vieira	2
quantitative	sEMG. Muscle activation intervals. Muscle activation		
variables	level. Estimation of muscle fiber conduction velocity.		
	Spectral features of sEMG and their physiological	Taian Vieira	2

	significance.		
	Myoelectric manifestations of muscle fatigue.	Marco Gazzoni,	3
		Taian Vieira	
	Factors influencing sEMG in isometric and non-isometric	Marco Gazzoni	3
	contractions (Heterogeneous spatial distribution of sEMG.		
	Identification of innervation zones etc).		
	Decomposition into fundamental patterns (synergies)	Andrea D'Avella	4
	(Non Negative Matrix Factorization).		
Clinical	Clinical examples of applications. Examples of common	Isabella	10
applications	mistakes and misinterpretations. Identification of poor	Campanini,	
	signal quality. Gait analysis, control of prosthesis and	Andrea Merlo,	
	exoskeletons, spasticity assessment and other		
	applications in sport and occupational medicine.		
			48

Module B - Instrumental analysis of motor performance Coordinators: Prof. Carlo Frigo and Prof. Manuela Galli

The objective of this module is to present technologies useful for assessment of motor performance of subjects with motor impairment. Technologies will be introduced after the physics and biomechanics presentation.

Topics	Lecturer	Hours
Basics of applied biomechanics	Carlo Frigo	14
Basics of biomechanical data processing	Manuela Galli	7
Torque measure: isometric, isotonic and isokinetic dynamometers	Nicola Maffiuletti	4
Neuromuscular assessment in motor functions: EMG	Nicola Maffiuletti	3
Arthrogenous muscle inhibition: twitch interpolation technique	Nicola Maffiuletti	4
Balance: static and dynamic posture assessment. Systems for data	Davide Cattaneo	11
acquisition and clinical data analysis	Elisa Gervasoni	
	Rita Bertoni	
	Maurizio Petrarca	
Movement analysis: kinematics (spatio-temporal parameters, joint	Manuela Galli	14
angles,)		
Movement analysis: kinetics (internal and external joint torques, ground	Carlo Frigo	7
reaction forces and COP, mechanical energy)		
Gait Analysis (standardized protocols, models, joints kinetics and	Roberto Gatti	14
kinematics, EMG, quality assessment, clinical cases): clinical cases	Maurizio Petrarca	
	Maria Gr Benedetti	
	Luigi Piccinini	
User-friendly devices for motor performance analysis in clinical practice	Matteo Zago	17
(IMU, and wearable systems. Instrumented clinical test: iTUG, i10-minutes	Federico Temporiti	
walking test, i6-minutes walking test, etc)		

Module C - Technologies for therapeutic exercise

Coordinators: Prof. Maria Chiara Carrozza and Prof. Roberto Gatti

The objective of this module is to present technologies used in physiotherapy planning. The module is designed to introduce the devices after a literature review on their application, efficacy, and posology.

Topics	Lecturer	Hours
Neurophysiology of motor control and motor recovery	Riccardo Fesce,	21
	Francesco Bolzoni	
Robots and systems for rehabilitation	Stefano Mazzoleni,	28
Exoskeletons and device for rehabilitation	Simona Crea,	
Clinical trials and assessment of biorobots for rehabilitation	Chiara Arienti,	
Machine learning and algorithm for control	Andrea Mannini	
Rationale and evidence on multisensory stimulation training:	Roberto Gatti	21
Use of cognitive facilitation in rehabilitation	Raffaello Furlan	
Rehabilitation with augmented or immersive virtual reality systems	Andrea Turolla	
Mechanical Peripheral Stimulation		
Rationale of balance training:	Davide Cattaneo	14
Balance rehabilitation with robotic systems	Elisa Gervasoni	
Balance rehabilitation with stabilometric platforms	Rita Bertoni	
	Maurizio Petrarca	
Electrical stimulation systems:	Francesca Baglio	7
applications of TMS in rehabilitation; applications of tDCS in	Simona Ferrante	
rehabilitation; functional electrical stimulation systems		
Advanced prosthetics and control of upper and lower limb	Christian Cipriani	12
	Francesco Clemente	
	Leonardo Cappello	
	Simona Crea	
Continuity of care: telerehabilitation	Fabrizio Natali	7
User-friendly devices for motor rehabilitation:	Paola Adamo,	7
biofeedback on force, ROM and sEMG; use of Apps; Other tools (es.	Johanna Jonsdottir	
	1	1

Internship Coordinators: Dr Davide Cattaneo and Dr Johanna Jon	sdottir		
Topics			CFU
During the period of the Master, the students are rec	uired to attend four	weeks of internship	10
(hospitals, laboratories, companies). The planning (place, objective etc.) of the internship must			
be presented to a specific Commission by the 31 March	2022		

MASTER PLANNING (2022)

First period of	Morning		Afternoon		
lessons					
Sun 16 Jan	Lecture Farina	Review of math and physics	S. Signals in space and in time (Merletti)		
Mon 17 Jan	Basic elec	trophysiology. Physiological signals	s in space and time (Merletti, Botter)		
Tue 18 Jan	Trai	nsducer sensor. Power line interfer	ence, noise, artefacts (Cerone)		
Wed 19 Jan	Reduction of	power line interference, noise, arte	efacts. EMG signal quantitative variables		
		(Merletti, Vieira,	Gazzoni)		
Thurs 20 Jan		EMG quantitative variable	es (Gazzoni, Vieira)		
Fri 21 Jan	Decomposition	into fundamental patterns. Clinica	l application (D'Avella, Campanini, Merlo)		
Sat 22 Jan		Clinical application (Car	npanini, Merlo)		
		Sunday 23 January			
Mon 24 Jan	Lecture Riener	Basics of ap	plied mechanics (Frigo)		
Tue 25 Jan		Basics of applied med	hanics (Frigo)		
Wed 26 Jan		Basics of biomechanical dat	ta processing (Galli)		
Thurs 27 Jan	Static and dy	namical posture assessment.	Torque measure: isometric, isotonic and		
	Acquisition and clinical data analysis (Cattaneo, isokinetic dynamometers (Maffi				
	Gervasoni, Bertoni)				
Fri 28 Jan	Neuromuscular assessment and AMI twitch interpolation technique (Maffiuletti)				
Sat 29 Jan	Static and dynamical posture assessment. Acquisition and clinical data analysis (Cattaneo,				
	Gervasoni, Bertoni, Petrarca)				

Second period	Morning		Afternoon			
of lessons						
Mon 13 June	Lecture Gatti Movement analysis: kinematics (Galli)					
Tue 14 June		Movement analysis: kine	ematics (Galli)			
Wed 15 June		Movement analysis: kind	etics (Frigo)			
Thurs 16 June		Gait analysis (Gatti, B	Benedetti)			
Fri 17 June	Gait analysis (Petrarca, Piccinini)					
Sat 18 June	Neuro	physiology of motor control and mo	otor recovery (Fesce, Bolzoni)			
		Sunday 19 June				
Mon 20 June	Lecture Frigo	Neurophysiology of motor cont	trol and motor recovery (Fesce, Bolzoni)			
Tue 21 June	Neuro	Neurophysiology of motor control and motor recovery (Fesce, Bolzoni)				
Wed 22 June	Rehabilitation engineering, telerehabilitation (Mazzoleni)					
Thurs 23 June	Robots and system for rehabilitation (Mazzoleni)					
Fri 24 June	Esoskeleton and device for rehabilitation (Crea)					
Sat 25 June		Clinical trials and machine learni	ing (Arienti, Mannini)			

Third period of	Morning		Afternoon
lessons			
Sun 2 Oct	Lecture Barbero	Multisensory stimulation trai	ning and mechanical peripheral stimulation

			(Gatti, Furlan)		
Mon 3 Oct	Multisensory stimulation training and virtual reality (Gatti, Turolla)				
Tue 4 Oct		Virtual real	ity (Turolla)		
Wed 5 Oct	Balance training	g with robotics and stabilom	etric systems (Cattaneo, Gervasoni, Bertoni)		
Thurs 6 Oct	Balance training with	n robotics and stabilometric	systems (Cattaneo, Gervasoni, Bertoni, Petrarca)		
Fri 7 Oct	Elec	ctrical stimulation system (TI	MS, tDCS, FES) (Baglio, Ferrante)		
Sat 8 Oct		Continuity of care: tel	erehabilitation (Natali)		
	Sunday 9 October				
Mon 10 Oct	Lecture Buccino	Advanced prosthetics a	nd control of upper and lower limb (Cipriani,		
		Clo	emente, Cappello, Crea)		
Tue 11 Oct	Advanced prosthetics of upper and lower limb (Cipriani, Clemente, Cappello, Crea)				
Wed 12 Oct	Us	er friendly devices for move	ment analysis (Zago, Temporiti)		
Thurs 13 Oct	User friendly devices for movement analysis (Zago, Temporiti)				
Fri 14 Oct	User friendly device	es for movement analysis	User friendly devices for motor rehabilitation		
	(Zago	, Temporiti)	(Adamo, Jonsdottir)		
Sat 15 Oct	User friendly device	es for motor rehabilitation			
	(Adam	o, Jonsdottir)			

MATR teachers

Name	Email address	Affiliation	Mod	Торіс
Adamo	paola.adamo@hum	Physiotherapist	С	User-friendly devices for motor rehabilitation
Paola	anitas.it	Humanitas Hospital,		biofeedback on force, ROM and sEMG; use of Apps. Other tools
		Rozzano		
Arienti	carienti@DONGNO	Researcher	С	Clinical trials
Chiara	<u>CCHI.IT</u>	Don Carlo Gnocchi		
	6 1 0 1	Foundation, Milan		
Baglio	fbaglio@dongnocch	Neurologist	С	Electrical stimulation systems: applications of tDCS in
Francesca	<u>i.it</u>	Don Gnocchi		rehabilitation
		Foundation, Milan		
Barbero	marco.barbero@su	Physiotherapist	L	Helical axis displacement in normal and pathological joints
Marco	<u>psi.ch</u>	SUPSI, Lugano		
		Switzerland,		
Benedetti	mariagrazia.benede	Physiatrist	В	Gait Analysis: standardized protocols, models, joints kinetics and
Maria	tti@ior.it	Rizzoli Orthopedic		kinematics, EMG, quality assessment, clinical cases
Grazia		Institute		
Bertoni Rita	rbertoni@dongnocc	Physiotherapist	B, C	Balance: static and dynamic posture assessment. Systems for data
	<u>hi.it</u>	Don Gnocchi		acquisition and clinical data analysis. Balance rehabilitation with
		Foundation, Milan		robotic systems and stabilometric platforms
Bolzoni	francesco.bolzoni@	Physiologist	С	Neurophysiology of motor control and motor recovery
Francesco	<u>hunimed.eu</u>	Humanitas		
		University, Pieve		
		Emanuele		
Botter	alberto.botter@poli	Engineer	Α	Mathematics and physics of physiological electrical signals:
Alberto	<u>to.it</u>	Politecnico of Turin		Physiological signals in space and in time. Spatial filter. Bipolar and
		(Lisin)		multichannel array sEMG
Buccino	buccino.giovanni@	Neurologist	L	Rationale and application of action observation training in motor
Giovanni	<u>hsr.it</u>	Vita-Salute San		rehabilitation
		Raffaele University,		
		Milan		

Cappello	leonardo.cappello@	Engineers	С	Advanced prosthetics and control of upper and lower limb
Leonardo	santannapisa.it	School of Advanced		
		Studies Sant'Anna,		
		Pisa		
Campanini	Isabella.Campanini	Physiotherapist	Α	Clinical examples of applications. Common mistakes and
Isabella	@ausl.re.it	Azienda USL-IRCCS		misinterpretations. Identification of poor signal quality. Gait
		di Reggio Emilia		analysis, control of prosthesis and exoskeletons, spasticity
				assessment and other applications
Cattaneo	dcattaneo@dongno	Physiotherapist	B, C	Balance: static and dynamic posture assessment. Systems for data
Davide	<u>cchi.it</u>	Don Gnocchi		acquisition and clinical data analysis. Balance rehabilitation with
		Foundation, Milan		robotic systems and stabilometric platforms
Cerone	giacintoluigi.cerone	Engineer	Α	Analysis of bioelectric signal and surface EMG.
Giacinto	@polito.it	Politecnico of Turin		Transducer, sensor. Conditioning and amplification of a signal. The
Luigi		(Lisin)		electrode as a transducer. Sampling and A/D conversion of
				bioelectric signal. Power line interference, noise and movement
				artefacts. ECG interference. Focus on sEMG
Cipriani	christian.cipriani@s	Engineers	С	Advanced prosthetics and control of upper and lower limb
Christian	antannapisa.it	School of Advanced		
		Studies Sant'Anna,		
		Pisa		
Francesco	<u>francesco.clemente</u>	Engineers	С	Advanced prosthetics and control of upper and lower limb
Clemente	@santannapisa.it	School of Advanced		
		Studies Sant'Anna,		
		Pisa		
Crea	simona.crea@santa	Engineer	С	Exoskeleton and device for rehabilitation and advanced prosthetics
Simona	nnapisa.it	School of Advanced		
		Studies Sant'Anna,		
		Pisa		
D'Avella	adavella@unime.it	Physiologist	Α	Decomposition into fundamental patterns (synergies)
Andrea		University of		
		Messina		
Farina	d.farina@imperial.a	Engineer	L	From neurophysiology to bioengineering of motor control
Dario	<u>c.uk</u>	Imperial College,		
		London		
Fesce	riccardo.fesce@hun	Physiologist	С	Neurophysiology of motor control and motor recovery
Riccardo	<u>imed.eu</u>	Humanitas		
		University, Pieve		
		Emanuele		
Ferrante	Simona.ferrante@p	Engineer	С	Electrical stimulation systems:
Simona	<u>olimi.it</u>	Politecnico of Milan		functional electrical stimulation systems
Frigo Carlo	carlo.frigo@polimi.i	Engineer	В	Basics of applied biomechanics.
	<u>t</u>	Politecnico of Milan		Movement analysis: kinetics
Furlan	raffaello.furlan@hu	Physician (Internal	С	Mechanical Peripheral Stimulation
Raffaello	<u>nimed.eu</u>	and Sport		
		Medicine)		
		Humanitas		
		University, Pieve		
		Emanuele		
Galli	manuela.galli@poli	Engineer	В	Basics of biomechanical data processing.
Manuela	<u>mi.it</u>	Politecnico of Milan		Movement analysis: kinematics
Gatti	roberto.gatti@huni	Physiotherapist	L, B,	Motor impairment kinesiology: from clinical assessment to
Roberto	<u>med.eu</u>	Humanitas	С	instrumental quantification.
		University, Pieve		Multisensory stimulation, gait analysis
		Emanuele	1	

Gazzoni	marco.gazzoni@poli	Engineer	Α	Factors influencing sEMG in isometric and non-isometric
Marco	to.it	Politecnico of Turin		contractions. Myoelectric manifestations of muscle fatigue.
		(Lisin)		Demo: how should bioelectric signals (sEMG) be properly detected
Gervasoni	egervasoni@dongn	Physiotherapist	B, C	Balance: static and dynamic posture assessment. Systems for data
Elisa	occhi.it	Don Gnocchi	_, -	acquisition and clinical data analysis. Balance rehabilitation with
		Foundation, Milan		robotic systems and stabilometric platforms
Jonsdottir	jjonsdottir@DONG	Physiotherapist	С	User-friendly devices for motor rehabilitation: biofeedback on
Johanna	NOCCHI.IT	Don Gnocchi		force, ROM and sEMG; use of Apps. Other tools
		Foundation, Milan		, , , , , , , , , , , , , , , , , , , ,
Maffiuletti	maffiuletti@gmail.c	Physiologist	В	Torque measure: isometric, isotonic and isokinetic dynamometers.
Nicola	om	Schulthess Clinic,		Arthrogenous muscle inhibition: twitch interpolation technique
		Zurich, Switzerland		
Mannini	andrea.mannini@g	Engineer	С	Machine learning
Andrea	mail.com	Don Gnocchi		
		Foundation,		
		Florence		
Mazzoleni	stefano.mazzoleni	Engineer	С	Robots and systems for rehabilitation
Stefano	@poliba.it	School of Advanced		
		Studies Sant'Anna,		
		Pisa and Politecnico		
		of Bari		
Merletti	roberto@robertom	Engineer	Α	Review of math and basic physics of signals. Fourier expansion of a
Roberto	<u>erletti.it</u>	Politecnico of Turin		signal and concept of amplitude and power spectrum. Concept of
		(Lisin)		bandwidth of a signal. Concept of filter. Basic electrophysiology.
				Origin and informative content of the main bioelectric signals: ECG,
				EEG, sEMG, nEMG. Modeling of signal generation. Demo: how
				should bioelectric signals (sEMG) be properly detected
Merlo	ingmerlo@me.com	Engineer	Α	Clinical examples of applications. Common mistakes and
Andrea		MerloBioEngineerin		misinterpretations. Identification of poor signal quality. Gait
		g, Reggio Emilia		analysis, control of prosthesis and exoskeletons, spasticity
				assessment and other applications
Natali	fabrizio.natali@hu	Physiotherapist	С	Continuity of care: telerehabilitation
Fabrizio	<u>manitas.it</u>	Humanitas Hospital,		
		Rozzano		
Petrarca	mauriziopetrarca@	Physiotherapist	В, С	Balance assessment,
Maurizio	gmail.com	"Bambino Gesù"		Children gait analysis,
		Children's Hospital,		Balance rehabilitation
Piccinini	luigi.piccinini@lano	Rome Physiatrist	В	Children gait analysis: clinical cases
Luigi	strafamiglia.it	La Nostra Famiglia		Ciliulen gait analysis. Cililical cases
Luigi	<u>straramigna.it</u>	Association, Bosisio		
		Parini (LC)		
Riener	robert.riener@hest.	Engineer	L	Robotics and rehabilitation: myths and reality
Robert	ethz.ch	Sensory-Motor	_	nosoties and remasmeators myths and reality
Nobell	CCHEICH	Systems Lab, ETH		
		Zurich, Switzerland		
Temporiti	<u>federico.temporiti</u>	Physiotherapist	В	User-friendly devices for motor performance analysis in clinical
Federico	@humanitas.it	Humanitas		practice
		University, Pieve		
		Emanuele		
Turolla	andrea.turolla@osp	Physiotherapist	С	Rationale and evidence of multisensory stimulation training.
Andrea	<u>edalesancamillo.net</u>	San Camillo		Rehabilitation with augmented or immersive virtual reality system
		Hospital, Venice		
Vieira	taian.martins@polit	Engineer	Α	Processing and feature extraction. Temporal features of sEMG.
Taian	<u>o.it</u>	Politecnico of Turin		Muscle activation intervals. Muscle activation level. Estimation of
	I	(Lisin)		muscle fiber conduction velocity. Spectral features of sEMG and

				their physiological significance.
				Demo. how should bioelectric signals (sEMG) be properly detected.
				Myoelectric manifestation of muscle fatigue
Zago	matteo2.zago@poli	Engineer	В	User-friendly devices for motor performance analysis in clinical
Matteo	<u>mi.it</u>	Politecnico of Milan		practice